
    Experience in Using PCs for Accelerator Instrumentation    

W. BLOKLAND
Fermi National Accelerator Laboratory*

ABSTRACT

The Accelerator Division's Instrumentation Group has been using the
graphical programming language, LabVIEW®, on a Macintosh computer for
four years. The desktop computer controls data-acquisition units such as GPIB
scopes or VME digitizers and communicates with the accelerator control sys-
tem. The group has successfully implemented a variety of instruments, rang-
ing from bunch intensity monitors to flying wires for transverse sigma mea-
surements. This paper describes our experience in regards to network com-
munication, development,  applications, upgrade process, and reliability.

INTRODUCTION

Four years ago the idea to use a non-embedded computer as basis for accel-
erator instrumentation was received as quite controversial. An embedded com-
puter with a real-time operating system was (and still is) regarded as a serious
work horse while a PC, especially the Macintosh with all its graphics, was re-
garded as a toy, at most usable for text editing but certainly not appropriate for
data-acquisition. The concerns conveyed were about performance and relia-
bility. Can you run an application fast enough on a desktop OS? Is the OS stable
enough? Don't you need a real-time OS to do data-acquisition? Is a desktop suit-
able for industrial use? How is the EMI shielding? How about the hard-disk re-
liability? Would the computer get stolen? Can you interface to the data-acquir-
ing hardware?

In our group, there were no experts to do the C programming for the appli-
cation and networking hookup as required for the embedded real-time com-
puters. The experts needed to be borrowed from other groups and might or
might not be available depending on their work load. We also wanted to start
using as much off-the-shelf hardware and software as possible to save time
and money. The embedded systems used at Fermilab did not have the wide
range and low cost of commercially available hardware and software that was
available for the PC. In addition, the cost of the enclosing crate is unnecessary
if no crate modules are used but instead, for example, GPIB instruments.

The type of instrumentation systems we planned to install would have an
operation cycle that starts by setting up the hardware, then optionally waits
for a trigger, acquires, retrieves and analyzes the data, updates the results,
and, if needed, logs the results to a file. This cycle would be around a 1 Hz or
slower. An example of this is a system that measures the beam's emittance by
flying a wire through it. The only real-time requirements relate to the sam-
pling of the signals, and this is performed by the instrument, not by the com-
puter. As such, there was no requirement for a real-time OS.

On the other side, LabVIEW1 (at the time available for the Mac only and the
desktop of choice in the division) offered an integrated development envi-

                                    
*  Operated by the Universities Research Association under contract with the U.S. Department of Energy.



ronment. The graphical displays and  analysis libraries help visualize and de-
velop the data analysis. The available drivers and hardware for various types
of instrumentation, e.g., GPIB, CAMAC, VME/VXI, provides for data-acquisition.
Adopting LabVIEW allows us to buy most of the hardware and significant parts
of the software. As LabVIEW uses the graphical language G, the programming
is easier and can be done by the people in our group who do not have a strong
background in  programming. While LabVIEW does have a learning curve, you
do end up in a very complete desktop development environment for applica-
tions ranging from on-line instrumentation to modeling.2

Therefore, given our needs and requirements, a PC (Macintosh) with
LabVIEW offered our group so many advantages that it was worth trying even
considering the voiced concerns.

 Our first project using LabVIEW initially employed an VXI embedded Mac-
intosh3, saving us space and guaranteeing good EMI shielding. However, diffi-
culties in adding hardware, e.g., tokenring cards, and lack of upgrade options,
forced us to switch to a regular desktop computer with a MXI interface con-
nected to the VXI crate. We found this a much better solution as we did not ex-
perience any problems with EMI or durability/reliability, but gained ex-
tendibility and lowered the cost. Figure 1 shows a typical configuration of the
desktop computer (a Macintosh) connected to a VXI crate or GPIB scope. The
desktop running LabVIEW will acquire the data, analyze it, and communicate
the results to a console or datalogger.

Ethernet

GPIB scope

VME/VXI crate

Desktop computer
Console

Remote
Location

Control Room 
or Office

Beam
signals

Figure 1. Configuration of Instrumentation.

NETWORKING

Introduction

The communication protocol for the Fermilab Accelerator is Acnet. While it
is possible to display data on consoles using other protocols, most utilities, like
the datalogger and parameter page, rely on the Acnet protocol. Therefore any



instrumentation system must be able to communicate using Acnet. The total of
all Acnet functions is quite extensive and would be time consuming to imple-
ment. Instead, we chose to implement only those features that were needed,
with the intention of adding functions in the future as needed.4

Requirements

Because there are many consoles, multiple requests for data must be han-
dled. A typical load would be several outstanding requests with update rates of
about 1 Hz. The possibility of temporarily too high loads are handled by reply-
ing standard Acnet errors, indicating lack of resources.

As for the implementation of the interface, the details, like the its pro-
gramming language or protocol, should be hidden for the application develop-
ers so that they do not have to be Acnet nor programming experts to set up an
instrumentation system.2

Implementation and Performance

Over the years, the implementation of the interface has been revised three
times. The initial version had most Acnet functions run independently of the
computer on a smart tokenring card (MCP, Macintosh Coprocessor Platform)
with its own OS (A/ROSE, Apple Real-time Operating System Environment). This
setup resulted in a fast response time for the Acnet interface and no load on
the main processor. As the lab started switching to  ethernet and A/ROSE was
orphaned by Apple, the Acnet functions were implemented as interrupt
driven routines using UDP over ethernet and running on the main processor.
This also worked well, delivering fast responses which could only be delayed if
interrupt was turned off (e.g., floppy disk access). Because processors became
faster, the performance of the single processor setup was actually higher than
the dual processor setup. Even faster processors available (e.g., PowerPC) made
possible a version completely written in G and as such portable among all
LabVIEW platforms. This gave us a wider choice of platforms and indepen-
dence from the Macintosh. This version does have its drawbacks on a non-pre-
emptive OS, as delays in the message response are unpredictable with other
applications running and depend on the load on the processor.

Table 1 shows some of the measured performances of the different inter-
face versions on different machines. The performance is measured as the
maximum number of replies (includes data access) to already issued and pro-
cessed data requests per second and the fastest measured response time
(includes processing and data access) for a single shot request message. For
the Pentium machine, a very high rate of replies per second is shown with a
rather slow response time to a single shot request. We think this has to do with
the TCP/IP implementation or OS settings, as we know that the actual process-
ing time of the request is less than 1 msec. All the listed performance numbers
satisfy our requirements.

The end-user of the data is either an operator or a program like a datalog-
ger. The operator must be able to control the system and retrieve the results.
This requires setting and reading capabilities with a desired response time of a
fraction (1/5) of a second. But a fixed and guaranteed response time is not
needed as the data will not be part of a feedback loop.



Interface Version Computer Replies
per sec

Response
(msec)

C on MCP MCP (68000@10 MHz) 200 11
C on Mac Mac IIci (68030@30) 200 11
LabVIEW on Mac PMac 7100 (601@66) 80 13
LabVIEW on PC PC (P5 @133) 450 20

Table 1. Performance of the Acnet Interface.

An additional interface, TCPORT enables the LabVIEW system to read and set
other front-ends. The TCPORT interface was written in LabVIEW's G, so it would
be portable to other LabVIEW platforms (WindowsNT, HP-UX, Solaris) as well.

DEVELOPMENT

As the experience with the user-friendliness of the then available embed-
ded systems was quite bad, much of the customization of the LabVIEW pro-
gramming environment has been focused towards user-friendliness. A tem-
plate is available to drop one's application into to obtain network connectivity,
while the network device registration is done through a spreadsheet table, and
read and write access to a device is a simple function call. We found that adding
the networking capability to an application was a matter of hours.

We also share as much LabVIEW code as possible to shorten development
time. We share the hardware drivers and analysis routines which are mostly
application independent and thus easy to share, but also some user-interface
and file access functions by writing these as application independent as pos-
sible and use these as templates to be customized for each application.

Additional tools4 are available to generate documentation (WWW), view the
program hierarchy, and test the values of the devices over the network.

Because of all the functionality included in LabVIEW, you can set up a
working prototype extremely fast, much faster than with the typical C-based
environment. This is very nice to do a proof of principle and to see results
early on. Finishing up the last 10% of the project still takes about 90% of the
time.

APPLICATIONS

Table 2 shows some of the LabVIEW applications in the Accelerator
Division. The applications are typed by

1) Operational: Beam measurements for use by operators, 3,5,6,7

2) Study: Temporary setups for studies,
3) Alarm: Notification of abnormal conditions,
4) Prototyping: Quick prototyping of a system,8
5) Lab: Automated test setups on the lab bench,
6) Display: Remote display of data possible over WWW, and
7) Modeling: Modeling of system behavior.



APPLICATION USE TYPE TRIGGER
DATA
SIZE ANALYSIS INSTRUMENT

COMMER
CIAL

RESPONSE
TIME

Beamline Tuner
Injection tuning of 
steering magnets Oper

Injection 
Tevatron 5 kb

N-L damped 
oscill. fit VXI digitizer yes* 5 seconds

Synchrotron 
Light Monitor

Transverse emit- 
tance measurement Oper Cycle 100 kb

2-D non-lin 
gaussian fit

framegrabber/
HV supply yes*

0.3 
s/bunch

D0 Collision 
Point Monitor

D0 Collision point 
determination Oper Cycle 10 kb

Rectifying 
integrator GPIB scope yes* 90 sec^

B0 Collision 
Point Monitor

B0 Collision point 
determination Oper Cycle 10 kb

Rectifying 
integrator GPIB scope yes* 75 sec^

Booster Ion 
Profile Mon.

Turn by turn 
transverse emittance Oper

Injection 
Booster 2.5 Mb

Non-linear 
gaussian fit

VME 
digitizers yes*

40 s/20k 
turns

MR Ion Profile 
Mon.

Turn by turn 
transverse emittance Oper

Injection 
MR 8 Mb

Non-linear 
gaussian fit

VME 
digitizers yes*

11 s/65k 
turns

Sampled Bunch 
Display

Long. emittance & 
int in MR/Tev Oper Cycle 10 kb

Integration 
& moments GPIB scope yes*

0.5 s/1020 
bunches

Electron Cool- 
ing Fly. Wires

Trans. profile 
display Oper User 15 kb Plot

VME 
digitizers yes*

15 sec/2 
wires

Accumulator 
Flying Wires

Trans. emittance 
measurement Oper User 20 kb

Non-linear 
gaussian fit

VME 
digitizers yes*

20 sec/2 
wires

Tevatron 
Flying Wires

Trans. emittance 
measurement Oper

Superviso- 
ry program 100 kb

Non-linear 
gaussian fit

VME digitzrs 
Motor cntr. yes*

3 sec/72 
bunches

Gas Jet#
Control of hydrogen 
over gas jet target Oper Cycle 10 kb NA

GPIB, 
serial,PLC yes* 2 sec

MR Tune 
monitor Tune measurements Study Injection 1 kb

Fourier 
transform

GPIB signal 
analyzer yes* 5 sec

MR coupled 
Bunch

Coupled bunch mode 
meaurements Study User 10 kb

Two-point 
correlation

GPIB 
digitizer yes* 15 sec

MR coupling Transverse coupling Study User 10 kb
Cross 
correlation

GPIB signal 
analyzer yes* 10 sec

MR kicker 
profile Kicker profile Study Injection 1 kb

Waterfall 
plot VXI digitizers yes* 5 sec

Accumulator 
Beamloss

Pager Alarm when 
beam drops Alarm Cycle 1 kb Comparison Modem yes 5 sec

Digital Damper
Damping of coupled 
bunch modes Proto

Initiali- 
zation 1 kb NA

in-house VXI 
modules no

inits 
hardware

High voltage 
power supply Testing HV supply Lab User 10 kb Plot GPIB scope yes 10 sec
Beam Position 
Modules

Testing of RF 
modules Lab User 2 kb

Signal 
response

GPIB sig gen 
& scope yes 30 sec

Beam Position 
Detector

Position/Signal 
dependency detector Lab User 10 kb Table

GPIB Anal. 
Nubus Motor yes 30 min

MECAR
display, filter 
download Display User 10 kb

Filter 
calculation NA NA 1-5 sec

WWW Device 
Page

Display (ascii) of 
any device for WWW Display User <1 kb NA NA < 1 sec

Device Page
Display of values of 
any device Display User < 10kb NA NA NA < 1 sec

On-line SBD
3-D extraction 
graphics for WWW Display 60 seconds 10kb NA NA NA

60 s (spill 
cycle)

Bunch Spacing
Bunch arrival times 
at detector Model User 10 kb

Addition of 
delays NA NA < 1 sec

Sampled Bunch 
simulation

Model of signal 
propagation Model User 10 kb FFT NA NA < 1 sec

* in-house 
timer cards # under development

Table 2. The list of LabVIEW Applications.



The operation of the application can be triggered by an accelerator event
(e.g., beam injection), by the user, by a supervisory program, or the program
repeating as fast as possible (cycle). The following two columns list the amount
of data (in bytes) that must be acquired and how it is analyzed. The next two
columns show the type of hardware and whether it was bought or developed
in-house. The last column shows the time it takes to acquire, analyze, and pre-
sent the data. This time gives a general idea about the time-frame of the appli-
cations. The times are not directly comparable because different computers are
used (e.g., 68000 versus PowerPC Macintosh). Much of the hardware for the
systems was commercially available; Most often only the hardware decoding
the Fermilab timing signals was made in-house. The  synchrotron light moni-
tor, for example, is composed of all commercial hardware except the timing
card:  CCD camera's, framegrabbers and its software, CAMAC high voltage
power supply, GPIB to CAMAC interface, GPIB voltage control, and GPIB inter-
face card3. The Sampled Bunch Display6 uses a GPIB scope and in-house CAMAC
timer card. We  use Nubus motor controller cards with included software for
the implementation of the Flying Wires. We also use video cards to add the
graphics display of the Mac to the Fermilab video channels.

Besides buying products related to the data-acquisition, we also buy prod-
ucts like a remote control program for diagnostic access and an installer util-
ity  to simplify installation of network software.

We found that given the available hardware support of LabVIEW and third
party vendors, we could buy almost all of our hardware and, in many cases
software packages were available as well, allowing us to efficiently implement
our projects within the LabVIEW platform.

UPGRADE PROCESS

As the accelerator  complex is upgraded for each run,  our instrumentation
systems are often asked to analyze more data faster. Typically, most of an ap-
plication's time is spent in analyzing the data. Because several systems are
using the same analysis, optimizing this algorithm, even though labor-inten-
sive, is an effective way to increase speed. To increase speed we can also buy
faster processors. Because the computers we use are regular desktop comput-
ers, they are inexpensive compared to embedded real-time computers, and the
innovation cycle is very short because of the high volume and intense com-
petition. Over the years, we have found that we could buy for about $3000 at
least a factor of 2 in overall speed per year. The desktop computers can also be
assigned for office use, server, and lab test setups. This results in a large pool
of computers which are used for spares, replacements, and upgrades. The flex-
ibility of the larger pool of computers has enabled us to immediately meet un-
expected user requests for studies or increased performance without first
having to purchase new computers, but by reassigning computers.

The major upgrades we have gone through with the Macintosh are the
switches from 680x0 processors to PPC 60x processors and from Nubus archi-
tecture to PCI architecture. The switch to PPC was easy for the LabVIEW devel-
opers as the programs could simply be loaded and would automatically re-
compile. The C-based interface required several weeks to be ported to PowerPC
code. Overall we had very few problems with the PPC conversion. Most of the
trouble occurred with the PCI Macintoshes, which initially had an unstable OS
and poor performing drivers. Giving the market some time to get rid of the
bugs in new hardware or software can save quite a lot of your own time.



Table 2, being an updated version2, reflects the upgrades of the Sampled
Bunch Display6, Ion Profile Monitor7, Tevatron Flying Wires, and Synchrotron
Light Monitor5. The SBD has been upgraded by using a better scope  with much
faster GPIB transfers and larger record lengths (factor of 20) and a faster
computer (factor of 6) to need only  0.5 seconds for determining 1020 bunch
intensities in fixed target mode with minimal program changes. The IPM
switched from a 68k Nubus Mac to a PCI PowerMac, increasing its speed by a
factor of 10. It can now transfer 8 Mbytes of data representing 65000 turns
(full Main Ring cycle) of 64 channels of ion profiles, decimate the data and fit
a gaussian function with linear offset to 200 profiles, and present this in a 3D
graph in about 11 seconds. The TFW switched from a Quadra 950 to a PowerMac
8100 and, together with the faster analysis routines obtained a tenfold speed
increase to fly three wires and analyze 72 profiles of 80 points in a total of 3
seconds. The SLM added a $500 accelerator card with a 66 MHz PPC 601 to its
Quadra 950 and got a threefold speed increase.

RELIABILITY

In general, we found that the combination of MacOS and LabVIEW provides
a stable application. On completion of the development we would have a reli-
able system. A leading cause of down-time is a site-wide power outage. As such
our longest running time is about 180 days.

During development we do encounter unexplained crashes, probably due to
interaction of applications. Here the Mac has a definite disadvantage to the
embedded real-time computer with a very well defined OS. The MacOS can be-
come rather unwieldy if many extensions and utilities are installed, and one
program's bug can crash another program. To prevent crashes, a Mac is set up
as a bare bones machine with only those programs installed that we really
need.

Within LabVIEW, you do not deal directly with pointers and memory alloca-
tion and thus avoid certain bugs. The trade-off is that you, as a developer, have
much less control over the memory allocation. One danger of this is that an
application that processes large amounts of data, e.g., the IPM, can run out of
memory as copies of the large buffers are being made automatically. We found
here that we needed to be very careful with the program design to minimize
memory usage, and we needed to add RAM to the Mac, what would not have
been needed for a C-based programming environment.

FUTURE

As the networking interface is now available for other LabVIEW platforms
as well, we are testing the reliability and performance of other platforms, in
particular WindowsNT  because of its preemptive and memory protected OS. A
switch from MacOS to WindowsNT is currently not necessary for us, as every-
thing we want to do can be done with MacOS. However, new developments, ei-
ther market driven or switch of desktop computer in the division,  might re-
quire us to switch in the future.

Another step contemplated is to further simplify and generalize the com-
munication interface by using an intermediate node that translates Acnet re-
quests into a very simple protocol that only mirrors memory and uses only
single shot settings to update data on either side. This simplified protocol is



then very easy to implement in any programming language and would make
porting to any hardware or software platform very easy, as little or no OS spe-
cific functions are needed for the interface. The simple protocol would be on
top of TCP/IP for generality and ease of networking.

SUMMARY

All in all we are very pleased with using LabVIEW as our development and
application environment. It enabled people, from technicians to hardware
engineers, in our group to complete many applications in a time frame that
would not have been possible using more traditional tools, such as C. We were
able to use existing hardware and buy additional components of the system,
whether it be software or hardware, to reduce development time. We had excel-
lent results with the use of desktop computers and had the extra benefits of re-
duced cost, flexibility, software and hardware availability, and upgrade paths.
LabVIEW allowed us to minimize the need for specialist programmers and
maximize the number of people that can work on a instrumentation system,
whether is for operational or lab bench purposes.

REFERENCES

[1] LabVIEW®. Made by National Instruments.
[2] W. Blokland, "A LabVIEW-based Accelerator Instrumentation Platform",

EPAC94, London, GB, 1994, pp. 1527-1529.
[3] W. Blokland, "A VXI/LabVIEW-based Beamline Tuner", PAC'93,

Washington, USA, 1993.
[4] W. Blokland, "Integrating the commercial software package LabVIEW

with Fermilab's Accelerator Control NETwork", ICALEPCS, Chicago, 1995.
[5] A. A. Hahn and P. Hurh, "Results From An Imaging Beam Monitor In The

Tevatron Using Synchrotron Light", HEACC'92, Hamburg, Germany, July
1992, pp. 248-250.

[6] E. Barsotti, "A longitudinal Bunch Monitoring System using LabVIEW
and high-speed oscilloscopes", 1994 Accelerator Instrumentation
Workshop, Vancouver, Canada, 1994, pp. 466-472.

[7] J. Zagel, "Booster Ion Profile Monitor using LabVIEW", 1994 Accelerator
Instrumentation Workshop, Vancouver, Canada, 1994, pp. 384-390.

[8] J. Steimel, "Fast Digital Damper for the Fermilab Booster", PAC95, 1995.


